[Graphics:Images/chaos_gr_1.gif]

A Chaotic Circuit

Analysis of a simple electric circuit that displays chaotic behavior

Here is a simple circuit containing a sinusoidal voltage source, a resistor, inductor and diode. The presence of the diode introduces nonlinearity and allows for the possibility of complex behavior.

[Graphics:Images/chaos_gr_2.gif]

We model the diode as having a piecewise–linear capacitance with a small offset voltage.

The equations for the charge and current in the diode can be written directly in Mathematica.

[Graphics:Images/chaos_gr_3.gif]

This substitutes values for parameters into the equations.

[Graphics:Images/chaos_gr_4.gif]

It is possible to solve the equations by using the Mathematica function NDSolve.

[Graphics:Images/chaos_gr_5.gif]

Here are the solutions for the charge as a function of time for three values of the driving voltage .

[Graphics:Images/chaos_gr_6.gif]

[Graphics:Images/chaos_gr_7.gif]

[Graphics:Images/chaos_gr_8.gif]

[Graphics:Images/chaos_gr_9.gif]

Here are the parametric plots of the charge versus current for the same  three values of the driving voltage .

[Graphics:Images/chaos_gr_10.gif]

[Graphics:Images/chaos_gr_11.gif]

[Graphics:Images/chaos_gr_12.gif]

[Graphics:Images/chaos_gr_13.gif]

[Graphics:Images/chaos_gr_14.gif]

[Graphics:Images/chaos_gr_15.gif]

[Graphics:Images/chaos_gr_16.gif]

[Graphics:Images/chaos_gr_17.gif]

[Graphics:Images/chaos_gr_18.gif]

[Graphics:Images/chaos_gr_19.gif]

[Graphics:Images/chaos_gr_20.gif]

[Graphics:Images/chaos_gr_21.gif]

[Graphics:Images/chaos_gr_22.gif]

[Graphics:Images/chaos_gr_23.gif]

[Graphics:Images/chaos_gr_24.gif]

[Graphics:Images/chaos_gr_25.gif]

[Graphics:Images/chaos_gr_26.gif]

[Graphics:Images/chaos_gr_27.gif]

[Graphics:Images/chaos_gr_28.gif]

[Graphics:Images/chaos_gr_29.gif]

[Graphics:Images/chaos_gr_30.gif]

[Graphics:Images/chaos_gr_31.gif]

[Graphics:Images/chaos_gr_32.gif]

[Graphics:Images/chaos_gr_33.gif]

[Graphics:Images/chaos_gr_34.gif]

[Graphics:Images/chaos_gr_35.gif]

[Graphics:Images/chaos_gr_36.gif]

[Graphics:Images/chaos_gr_37.gif]

[Graphics:Images/chaos_gr_38.gif]

[Graphics:Images/chaos_gr_39.gif]

[Graphics:Images/chaos_gr_40.gif]

[Graphics:Images/chaos_gr_41.gif]

[Graphics:Images/chaos_gr_42.gif]

[Graphics:Images/chaos_gr_43.gif]

[Graphics:Images/chaos_gr_44.gif]

[Graphics:Images/chaos_gr_45.gif]

[Graphics:Images/chaos_gr_46.gif]

[Graphics:Images/chaos_gr_47.gif]

[Graphics:Images/chaos_gr_48.gif]

[Graphics:Images/chaos_gr_49.gif]

[Graphics:Images/chaos_gr_50.gif]

[Graphics:Images/chaos_gr_51.gif]

[Graphics:Images/chaos_gr_52.gif]

[Graphics:Images/chaos_gr_53.gif]

[Graphics:Images/chaos_gr_54.gif]

[Graphics:Images/chaos_gr_55.gif]

[Graphics:Images/chaos_gr_56.gif]

[Graphics:Images/chaos_gr_57.gif]

[Graphics:Images/chaos_gr_58.gif]

[Graphics:Images/chaos_gr_59.gif]

[Graphics:Images/chaos_gr_60.gif]

[Graphics:Images/chaos_gr_61.gif]

[Graphics:Images/chaos_gr_62.gif]

[Graphics:Images/chaos_gr_63.gif]

[Graphics:Images/chaos_gr_64.gif]

[Graphics:Images/chaos_gr_65.gif]

[Graphics:Images/chaos_gr_66.gif]

[Graphics:Images/chaos_gr_67.gif]

[Graphics:Images/chaos_gr_68.gif]

[Graphics:Images/chaos_gr_69.gif]

[Graphics:Images/chaos_gr_70.gif]

[Graphics:Images/chaos_gr_71.gif]

[Graphics:Images/chaos_gr_72.gif]

[Graphics:Images/chaos_gr_73.gif]

[Graphics:Images/chaos_gr_74.gif]

[Graphics:Images/chaos_gr_75.gif]

[Graphics:Images/chaos_gr_76.gif]

[Graphics:Images/chaos_gr_77.gif]

[Graphics:Images/chaos_gr_78.gif]

[Graphics:Images/chaos_gr_79.gif]

[Graphics:Images/chaos_gr_80.gif]

This draws a bifurcation diagram showing how the oscillations of the charge first period double, then eventually become chaotic as the driving voltage increases.

[Graphics:Images/chaos_gr_81.gif]

[Graphics:Images/chaos_gr_82.gif]


Converted by Mathematica      May 4, 2002